
AWS SERVERLESS

CONTENT MANAGEMENT SYSTEM

1. RATIONALE 2. OBJECTIVES

5. AREAS OF DIFFICULTY

3. METHOD 4. ARTIFACTS & DELIVERABLES

REFERENCES

ADMIN DASHBOARD WEBSITE

S3 SITE HOSTING

LAMBDA PROCESSING

API GATEWAY

DYNAMO DATABASE

2 | Admin requests are sent

to the CMS through the API

Gateway

4 | LAMBDA performs au-

thentication of the user

against Dynamo database

3 | API Gateway receives the

request, and routes it to

LAMBDA for processing

7 | These changes are pushed

to the S3 hosted site

8 | The visitor sees the chang-

es made and appreciates the

content

ARCHITECTURE MODEL

6 | A status message about the

requested changes are sent

back to the admin dashboard

PROCESS

2

3

7

8

6

4

5 | Performs the changes re-

quested, taking data from S3

or Dynamo database 5

1 | Admin accesses the admin

dashboard stored on the S3

cloud storage unit
1

The team at Bulletproof wanted to demonstrate the power and flexi-

bility of the Amazon Web Services (AWS) platform by developing a

Content Management System (CMS) that runs entirely on AWS,

without depending on any capabilities that aren’t native to the plat-

form.

A system such as this has never been attempted before in open

source software. Through this demonstration of the strength in the

platform, they were hoping to attract potential clients into adopting

AWS services, therefore expanding Bulletproof’s client base. By

working with AUT, Bulletproof could create a Minimal Viable Product

(MVP) of the concept without expending money or time.

Bulletproof was flexible about the exact form that the content

management system should take. Some of the high level re-

quirements stipulated by Bulletproof included:

For the AWS Lambda CMS, it was important to Bul-

letproof that the CMS be low-cost or free to run, and

as such, we produced a system architecture which

facilitates said requirement. Much like traditional web

applications, we required a backend to manage the

processing of requests, data and produce respons-

es. However, unlike traditional web applications, the

Lambda backend does not work quite the same.

As Lambda runs only when required, costs associat-

ed with Lambda are calculated on 100 millisecond

portions of Lambda function run time (Amazon Web

Services n.d.). Our intention was to produce one

Lambda backend function which handles all incom-

ing requests, data manipulation, and response proto-

col in order to mitigate the requirement of bulked

Lambda functions, Lambda chaining/piping, and con-

currency costs.

Our team, understanding the difficulties of Lambda

after considering several architecture solutions,

eventually modelled our solution with a single Lamb-

da function backend.

SECURITY MODEL

As the AWS Lambda CMS is a custom built solution, it required us to build a custom built security model. During our

training of AWS services, we did find that AWS do provide services for end user logins and session management for

applications hosted on AWS, however, these services were not only impossible to implement within our CMS solu-

tion (Amazon Web Services n.d.), but completely

lacking in the required features and User man-

agement functionality required by Bulletproof.

Yet again, our team went to the drawing board to

produce a custom Security model which would fa-

cilitate several requirements:

 User sessions

 Token production and evaluation

 Cookie production and evaluation

 User assigned permissions (roles)

Our custom security model was designed and constructed similarly to the security model of existing CMS solutions

that we examined.

Adam Campbell (1311607) John Cave (1324776) Miguel Saavedra (13826904) Chris Treadgold (1399164)

PRODUCED DELIVERABLES

None of the team had any experience working with Amazon Web Services or cloud

platforms. Bulletproof provided an online course in AWS basics to help us get start-

ed, but we found that the majority of the training was not applicable to our project.

This meant we planned to use some AWS services which we discovered did not

meet our requirements, and this resulted in wasted resources. With the help of the

Bulletproof team we found alternative solutions.

We initially chose Node.js as the language for our backend, as some of our team

had experience using it. However, we found that it did not produce useful error

messages, and hence would impede the development and integrity of the prod-

uct. So we were forced to switch languages to Python as it had comparable

speeds (GitHub n.d.) at the end of the first sprint. None of the team had much ex-

perience developing in Python, so the team reviewed online tutorials for Python.

This project was conceived as a proof-of-concept to demonstrate the viability of a low

to no cost Content Management System on the Amazon Web Services platform. This,

along with the unique project concept, meant that many of the product design deci-

sions were left to us as a team. Considering the fact that we had no experience with

AWS and only one of us had experience with running websites, this meant that we

had to define requirements based on research of existing CMS platforms.

 Online user guide

 Online developer documentation

 CMS install script

 CMS uninstall script

 Private web based admin dashboard

 Public blog/corporate website

 CMS source code repository (GitHub)

TECHNICAL REQUIREMENTS GATHERING

AMAZON WEB SERVICES

BACKEND PROGRAMMING LANGUAGE

INITIAL REQUIREMENTS

Initially, Bulletproof did not know what they wanted in regards to CMS

functionality, nor did they have any specific expectations. In order to create a

starting point for our efforts, we conducted several time boxed interviews with

Bulletproof, in order to extract functional requirements for the CMS. The

interviews had an open structure where we added ideas to a whiteboard, and

Bulletproof accepted or rejected them as they saw fit.

METHODOLOGY

In order to produce such a system with little initial direction and projection, we

opted to go with an Agile approach, so we could adapt to frequently changing

requirements and feedback. Our client suggested that we use SCRUM, which

was agreed upon between our supervisor and ourselves. We decided on two

week sprints so that we could get a reasonable amount of work done in a single

iteration, whilst still getting feedback frequently.

Our level of adherence to the specifics of the SCRUM methodology has not been

100%. In particular, at the beginning of semester two we opted to do away with

daily stand-ups. We were not finding them useful as we generally could not do

them in person due to university schedule constraints, and we were

communicating consistently regardless.

We found SCRUM’s sprint retrospectives and sprint reviews to be highly valuable

(Cockburn, A. 2006). Sprint reviews allowed us to see what Bulletproof liked and

disliked in our project progress, as well as letting us constult with the Bulletproof

team regarding challenges we were facing using AWS Services. Sprint

retrospectives frequently revealed problems with our methods and allowed us to

improve them as necessary.

TOOLS

The tools we used consistently throughout the entire project were Facebook

Messenger and JIRA. Over the course of the project we also tried using several

other tools including Trello and Slack. However we dropped these as keeping up

to date with what was going on with each tool was complicated and didn’t seem to

offer us much value. Facebook provided a convenient platform for the whole team

to facilitate live communication.

TESTING

Due to AWS lacking an automated testing framework, our testing practices were

limited to manual unit testing. Integration testing also occurred when merging

code; this consisted of more unit tests done after a merge. The client also

performed end user testing at the end of each sprint. In retrospect we realise that

more time and effort should have been put into not only testing as a practice, but

also formally defining tests. We also peer reviewed our code often to ensure code

quality.

 The CMS would run only upon Amazon’s managed cloud services.

 The CMS would not require a constantly running server to run.

 The CMS would be able to be used at minimal or no cost.

 The CMS should be well documented.

With these objectives, we were tasked with making a CMS to produce a corporate website or personal blog that

would fulfil the basic needs of this use case.

Waqar Hussain (Supervisor)

Amazon Web Services. (n.d.). AWS Lambda | Pricing. Retrieved from https://aws.amazon.com/lambda/pricing/

Amazon Web Services. (n.d.). AWS User Authentication & Mobile Data Service | Amazon Cognito. Retrieved from https://aws.amazon.com/cognito/

Cockburn, A. (2006). Agile software development: the cooperative game. Pearson Education.

GitHub. (n.d.). GitHub - berezovskyi/lambda-test: Test (pseudo) AWS runtime startup time. Retrieved from https://github.com/berezovskyi/lambda-test

Auckland University of Technology research and development project for Bulletproof (March to November 2016)

